
© 2023 Snowflake Inc. All Rights Reserved Page 1 of 12

1.

2.

3.

Deferred Merge (for high-churn tables)
Some DML patterns cause poor DML performance in the data pipeline that, in some cases, can result in
extremely high data latency and other performance problems. This article explains why the problem occurs
and provides potential solutions.

By Darren Gardner

Problem definition

Some DML patterns do not perform well in Snowflake. One potentially challenging pattern that some customers
have encountered is with a MERGE or UPDATE against a random subset of the rows in the target table. Even if
only an extremely small of the rows in the target table are updated, if those rows are distributed across percentage
a high number of micro-partitions, then these micro-partitions (since micro-partitions are) all rows within immutable
will need to be completely rewritten to new micro-partitions. At a minimum, this can result in poor DML performance
in the data pipeline, and in some cases cause extremely high data latency. This can also adversely affect the
clustering of the table, negatively impacting query performance against the target table due to poor pruning.

Deferred merge solution

The basis of the proposed "deferred" solution is to replace the original existing table (that the DMLs are being
applied to) with three objects:

A "base" table that stores a consistent "snapshot" of the data at a specific point in time (not necessarily
"current" to the latest set of data). It has an identical column structure as the original table, but with a
different name.
A "delta" table that acts as an append-only buffer for rows before they are applied to the base table. Note
that this can often simply be the staging table at the start of the data pipeline, in which case there is no need
for a new physical table. It typically has an identical column structure as the original table, plus an additional
timestamp column that indicates the effective time of the row. This can be an existing column in the table, or
it can be computed via a context function () at the time the data e.g. CURRENT_TIMESTAMP would have been
applied (typically via a MERGE).
A view that has an identical column structure as the original table with the same name as the original table.
This view coalesces data from the base and delta tables "on the fly" to present a "current" (final) view of the
data that matches what we would see in the original table if we had applied the MERGE.

Now for the workflow:

© 2023 Snowflake Inc. All Rights Reserved Page 2 of 12

Assume that we start with all tables empty. When the system encounters new rows, it appends them to the delta
table. If a query is issued against the view before the delta data is merged into the base table, the system uses the
delta data to compute the "final state." Otherwise, the system combines the base table and the delta table data to
compute the final state.

An automated job merges the delta table data into the base table. This job runs on a schedule, so data flowing into
the delta table is not a factor. When the job runs, delta table data is briefly present in both the delta table and the
base table. The view therefore needs to avoid double processing these rows and ensure that the current state
snapshot is correct. Once the delta rows are applied to the base table, the job purges the rows from the delta table.

Sample SQL script

Initial Configuration (sample tables)

CREATE OR REPLACE TRANSIENT TABLE T_BASE (
 ID INTEGER
 ,COL_X VARCHAR
 ,COL_Y VARCHAR
)
;
CREATE OR REPLACE TRANSIENT TABLE T_DELTA (
 ID INTEGER
 ,TS TIMESTAMP_LTZ
 ,COL_X VARCHAR
 ,COL_Y VARCHAR
)
;

Preferred Approach: Stream-based source using UNION ALL with NOT EXISTS

Overview:

This approach uses a UNION ALL to blend the delta data with the base, with a NOT EXISTS added to ensure that a
given key (ID) is emitted from the base data if it is emitted by the delta data. One significant performance only not
benefit of this approach is that any filters applied against the view will be "pushed down" into each branch of the
UNION ALL, allowing for pruning against the base table, which we expect can grow to be quite large over
time. Attaching an stream object to the delta table and using it as our source for the delta data that is append-only
blended with the base data is recommended, since it efficiently emits only those rows in the delta table that have
not yet been applied to the base, which eliminates the need to aggressively truncate data from the delta table that
might otherwise be required to achieve reasonable performance. Also, to prevent the delta table from growing

an append-only without bound indefinitely, periodic purges of delta data would need to be performed, and using
reduces the complexity of eliminating race conditions when purging delta data is done while new data is stream

being loaded into the delta table. In fact, rows from the delta data can be purged even the stream has been before
consumed, and the stream will still emit the rows, since an append-only stream ignores delete operations. Overall,
this is typically the simplest and most efficient approach to the deferred merge strategy.

© 2023 Snowflake Inc. All Rights Reserved Page 3 of 12

View Definition:

CREATE OR REPLACE STREAM STRM_DELTA ON TABLE T_DELTA APPEND_ONLY=TRUE
;

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_NET_DELTA AS (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM T_DELTA CHANGES (INFORMATION => APPEND_ONLY) AT (STREAM =>
'STRM_DELTA')
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
)
 SELECT B.ID
 ,B.COL_X
 ,B.COL_Y
 FROM T_BASE B
 WHERE NOT EXISTS (
 SELECT 1
 FROM CTE_NET_DELTA D
 WHERE D.ID = B.ID
)
 UNION ALL
 SELECT D.ID
 ,D.COL_X
 ,D.COL_Y
 FROM CTE_NET_DELTA D
;

© 2023 Snowflake Inc. All Rights Reserved Page 4 of 12

MERGE Statement (used to periodically apply delta data to base table)

MERGE INTO T_BASE B
 USING (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM STRM_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
) D
 ON D.ID = B.ID
 WHEN NOT MATCHED THEN INSERT (ID, COL_X, COL_Y) VALUES (D.ID, D.
COL_X, D.COL_Y)
 WHEN MATCHED THEN UPDATE SET COL_X = D.COL_X, COL_Y = D.COL_Y
;

Test Harness (to demonstrate logic and validate correctness)

-- Ensure tables are empty (if re-executing tests)
TRUNCATE TABLE T_BASE
;

TRUNCATE TABLE T_DELTA
;

-- Verify that initial result set is empty...
SELECT *
 FROM V_MERGED
;

-- Acquire an initial delta (batch)... but do not yet apply it to the
base table...
INSERT INTO T_DELTA (ID, TS, COL_X, COL_Y)
 VALUES
 (1, '2020-01-01 01:00:00', 'X1A', 'Y1A')
 ,(2, '2020-01-01 01:00:00', 'X2A', 'Y2A')
 ,(2, '2020-01-01 01:01:00', 'X2B', 'Y2A')
;

-- View the "final" result set (computed from just the delta stream,
since the base table is empty)...
SELECT *
 FROM V_MERGED
;

-- Purge all rows from the delta table...

© 2023 Snowflake Inc. All Rights Reserved Page 5 of 12

-- Note that there is a NO potential race condition here, even if new
rows are being continuously loaded into delta table.
-- Also note that we have not yet consumed the rows, but they will
still be emitted by the stream later on
TRUNCATE TABLE T_DELTA
;

-- Confirm that newly added rows that were purged from the delta table
are still emitted from the stream...
SELECT *
 FROM STRM_DELTA
;

-- View the "final" result set (computed from just the delta stream,
since the base table is empty)...
SELECT *
 FROM V_MERGED
;

-- Now apply the delta stream to the base table...
-- Note that the QUALIFY filter ensures that only the LATEST VERSION of
each key (ID) is applied
MERGE INTO T_BASE B
 USING (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM STRM_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
) D
 ON D.ID = B.ID
 WHEN NOT MATCHED THEN INSERT (ID, COL_X, COL_Y) VALUES (D.ID, D.
COL_X, D.COL_Y)
 WHEN MATCHED THEN UPDATE SET COL_X = D.COL_X, COL_Y = D.COL_Y
;

-- Confirm that the stream is now empty since the rows have been
applied to the base table via the MERGE...
SELECT *
 FROM STRM_DELTA
;

-- Again, view the "final" result set (blending data from delta stream
and base table), and confirm that it matches the previous result set...
SELECT *
 FROM V_MERGED
;

-- Acquire another delta (batch)... but do not yet apply it to the base
table...

© 2023 Snowflake Inc. All Rights Reserved Page 6 of 12

INSERT INTO T_DELTA (ID, TS, COL_X, COL_Y)
 VALUES
 (1, '2020-01-01 02:00:00', 'X1A', 'Y1B')
 ,(2, '2020-01-01 02:00:00', 'X2C', 'Y2A')
 ,(2, '2020-01-01 02:01:00', 'X2C', 'Y2B')
 ,(3, '2020-01-01 02:00:00', 'X3A', 'Y3A')
 ,(3, '2020-01-01 02:01:00', 'X3B', 'Y3B')
 ,(3, '2020-01-01 02:02:00', 'X3C', 'Y3C')
;

-- Purge all rows from the delta table...
TRUNCATE TABLE T_DELTA
;

-- Again, view the "final" result set (blending data from delta stream
and base table), and confirm that it reflects the latest batch...
SELECT *
 FROM V_MERGED
;

-- Apply the new batch in the delta stream to the base table...
MERGE INTO T_BASE B
 USING (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM STRM_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
) D
 ON D.ID = B.ID
 WHEN NOT MATCHED THEN INSERT (ID, COL_X, COL_Y) VALUES (D.ID, D.
COL_X, D.COL_Y)
 WHEN MATCHED THEN UPDATE SET COL_X = D.COL_X, COL_Y = D.COL_Y
;

-- Again, view the "final" result set (blending data from delta stream
and base table), and confirm that it matches the previous result set...
SELECT *
 FROM V_MERGED
;

Alternative Approach: Table-based source using UNION ALL with NOT EXISTS

Overview:

This approach is almost identical to the previous approach, except it does not incorporate a stream. Since the delta
table will grow over time, it is expected that frequent purges of delta data from the table, and/or a more advanced
technique (such as the incorporation of a high-water mark filter) will be required to achieve reasonable
performance. Also, without streams, there is the potential for race conditions if purges of delta data occur at the

© 2023 Snowflake Inc. All Rights Reserved Page 7 of 12

same time as new rows are being added to the delta table, which often increases operational complexity. So, we
present it here as an option, but in general recommend the stream-based approach over it.

View Definition:

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_NET_DELTA AS (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM T_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
)
 SELECT B.ID
 ,B.COL_X
 ,B.COL_Y
 FROM T_BASE B
 WHERE NOT EXISTS (
 SELECT 1
 FROM CTE_NET_DELTA D
 WHERE D.ID = B.ID
)
 UNION ALL
 SELECT D.ID
 ,D.COL_X
 ,D.COL_Y
 FROM CTE_NET_DELTA D
;

MERGE Statement (used to periodically apply delta data to base table)

MERGE INTO T_BASE B
 USING (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM T_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
) D
 ON D.ID = B.ID
 WHEN NOT MATCHED THEN INSERT (ID, COL_X, COL_Y) VALUES (D.ID, D.
COL_X, D.COL_Y)
 WHEN MATCHED THEN UPDATE SET COL_X = D.COL_X, COL_Y = D.COL_Y
;

© 2023 Snowflake Inc. All Rights Reserved Page 8 of 12

Optional enhancements (schema change required: addition of timestamp to base table)

Note: this is a prerequisite for each of the alternative approaches that are presented below, none of which uses a
stream object.

Modified Schema for Base Table

CREATE OR REPLACE TRANSIENT TABLE T_BASE (
 ID INTEGER
 ,TS TIMESTAMP_LTZ -- New timestamp column added here
 ,COL_X VARCHAR
 ,COL_Y VARCHAR
)
;

Modified MERGE statement (to manage new timestamp column)

MERGE INTO T_BASE B
 USING (
 SELECT ID, TS, COL_X, COL_Y
 FROM T_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
) D
 ON D.ID = B.ID
 WHEN NOT MATCHED THEN INSERT (ID, TS, COL_X, COL_Y) VALUES (D.ID, D.
TS, D.COL_X, D.COL_Y)
 WHEN MATCHED AND D.TS >= B.TS THEN UPDATE SET TS = D.TS, COL_X = D.
COL_X, COL_Y = D.COL_Y
;

Approach: Use MAX(<timestamp>) in base table as High-Water-Mark

An alternative to using a stream would be to incorporate "high-water mark" logic via a timestamp column in the base
table. Assuming that the data in the delta table is naturally chronologically clustered, this filter condition (that uses a
fast metadata-only query against the table) should prune away all historical rows and avoid a table scan of T_BASE
the delta table.

© 2023 Snowflake Inc. All Rights Reserved Page 9 of 12

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_NET_DELTA AS (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM T_DELTA
 WHERE TS > (SELECT IFNULL(MAX(TS), TO_TIMESTAMP(0)) FROM T_BASE)
-- New filter condition against timestamp
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
)
 SELECT B.ID
 ,B.COL_X
 ,B.COL_Y
 FROM T_BASE B
 WHERE NOT EXISTS (
 SELECT 1
 FROM CTE_NET_DELTA D
 WHERE D.ID = B.ID
)
 UNION ALL
 SELECT D.ID
 ,D.COL_X
 ,D.COL_Y
 FROM CTE_NET_DELTA D
;

Approach: Handle Out-Of-Sequence (Late-Arriving) Data

All of the implementations above assume that the latest data (for an) in the delta data set is ID always
chronologically greater than or equal to the latest data (for that same) in the base table. So, if the base table is ID
current as of T2, the latest data set in the delta table for an will never be T1 (< T2). The logic in the ID IFF(...)
code is dependent on this being true. However, this logic can be adjusted to account for late-arriving delta data, if
we track the base data with a timestamp as follows:

© 2023 Snowflake Inc. All Rights Reserved Page 10 of 12

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_NET_DELTA AS (
 SELECT ID
 ,TS
 ,COL_X
 ,COL_Y
 FROM T_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
)
 SELECT B.ID
 ,B.COL_X
 ,B.COL_Y
 FROM T_BASE B
 WHERE NOT EXISTS (
 SELECT 1
 FROM CTE_NET_DELTA D
 WHERE D.ID = B.ID
 AND D.TS >= B.TS -- Modified logic here
)
 UNION ALL
 SELECT D.ID
 ,D.COL_X
 ,D.COL_Y
 FROM CTE_NET_DELTA D
 WHERE NOT EXISTS (
 SELECT 1
 FROM T_BASE B
 WHERE B.ID = D.ID
 AND B.TS > D.TS -- Modified logic here
)
;

© 2023 Snowflake Inc. All Rights Reserved Page 11 of 12

Alternative approaches considered (but NOT RECOMMENDED)

Alternative Approach: FULL OUTER JOIN

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_NET_DELTA AS (
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM T_DELTA
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
)
 SELECT IFF(D.ID IS NOT NULL, D.ID, B.ID) AS ID
 ,IFF(D.ID IS NOT NULL, D.COL_X, B.COL_X) AS COL_X
 ,IFF(D.ID IS NOT NULL, D.COL_Y, B.COL_Y) AS COL_Y
 FROM T_BASE B
 FULL OUTER JOIN CTE_NET_DELTA D
 ON D.ID = B.ID
;

© 2023 Snowflake Inc. All Rights Reserved Page 12 of 12

Alternative Approach: UNION ALL inside window function

CREATE OR REPLACE VIEW V_MERGED
AS
 WITH CTE_UNION_ALL AS (
 SELECT ID
 ,COL_X
 ,COL_Y
 ,TS
 FROM T_DELTA

 UNION ALL

 SELECT ID
 ,COL_X
 ,COL_Y
 ,'1900-01-01'
 FROM T_BASE
)
 SELECT ID
 ,COL_X
 ,COL_Y
 FROM CTE_UNION_ALL
 QUALIFY 1 = ROW_NUMBER() OVER (PARTITION BY ID ORDER BY TS DESC)
;

Comparison of approaches

We have determined that the UNION ALL with NOT EXISTS approach will usually perform much better than the FU
 or approaches. The primary reason is that it supports far LL OUTER JOIN UNION ALL inside window function

better pruning against the base table. The approach does not allow predicate pushdown (a FULL OUTER JOIN
significant prerequisite for effective pruning) due to the coalescing operation that is used to derive the column
expressions. Similarly, the approach requires that all data (base and delta) UNION ALL inside window function
pass through a window function to determine the final values, and predicate pushdown is only possible for columns
that are included in the PARTITION BY clause. In this case, that would be the ID column. Filtering against any other
column(s) would first need to apply the window function to all of the data, and then filter afterwards. By contrast, the
UNION ALL with NOT EXISTS approach allows predicate pushdown against the base table, which can provide
tremendous performance benefits over the other two approaches.

© 2021–2022 Snowflake Inc. All rights reserved. Snowflake, the Snowflake logo, and all other Snowflake product,
feature, and service names mentioned herein are registered trademarks or trademarks of Snowflake Inc. in the

 United States and other countries. The information contained in this document is provided for informational
purposes only and shall not create any representations or other obligations.

	Deferred Merge (for high-churn tables)

